Higher-order Duality for a Nondifferentialble Programming Problem. A Converse Duality Theorem
نویسندگان
چکیده
Relative to a general class of nondifferentiable mathematical programming problems we consider a converse duality result with respect to a higher order Mond-Weir dual. AMS Mathematics Subject Classification: 90C29, 90C30, 90C32.
منابع مشابه
SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
متن کاملAn Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem
A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کامل